Hebel Mechanik:

Hebel sind kraftumformende Einrichtungen und werden eingesetzt, um Kraft zu sparen.

Man unterschiedet 2 Hebelarten:

einseitige Hebel zweiseitige Hebel - meine Kraft wirkt nach oben - meine Kraft wirkt nach unten - Drehpunkt ist **zwischen** den Enden - Drehpunkt befindet sich an einem Ende Bezeichnung der Bestandteile

D = Drehpunkt

= die Kraft, die man am Körper erreichen will $\mathbf{F}_1 = \mathbf{Last}$

 $F_2 = Kraft$ = die Kraft, die man **selbst** auf**bringen** muss

= die **Länge** des Hebelarms auf der Seite der Last l_1 = Lastarm

 l_2 = Kraftarm = die Länge des Hebelarms auf der **Seite** der Kraft

Anwendungsbeispiele

Hebelgesetz: Für jeden Hebel gilt

einseitige Hebel	zweiseitige Hebel				
- Türklinke	- Zange				
- Schraubenschlüssel	ZangeSchere				
- Schubkarre	– Wippe				
- Fahrradpedal	WippeBootsruder				

Im Schülerexperiment (↗ siehe Protokoll) hast du selbständig herausgefunden:

in Worten:	Bei jedem Hebel ist das		aus		und	arm
	genau so groß wie das		aus		und	arm.
Also gilt:	Je der Kraf	tarm ist, desto		Kraft mus	ss mai	n selbst aufbringen.